Mostrando postagens com marcador CÉLULA GaAs. Mostrar todas as postagens
Mostrando postagens com marcador CÉLULA GaAs. Mostrar todas as postagens

Uma célula solar GaAs ultrafina atinge uma eficiência de 19,9%

Uma colaboração franco-alemã consegue captar a luz em uma camada de arseneto de gálio com apenas 205 nanômetros de espessura. Um artigo na Nature Energy descreve o apelo desta nova tecnologia para energia fotovoltaica.

Imagem: C2N / HL Chen e outros.

Uma equipe de pesquisadores do Instituto Fraunhofer ISE na Alemanha e do Centro de Nanociências e Nanotecnologias (C2N) da Universidade Paris-Saclay na França afirmam ter desenvolvido uma célula solar ultrafina à base de arseneto de gálio (GaAs), que é um composto pertencente a os chamados materiais III-IV, com eficiência de 19,9%.

Um artigo publicado esta semana na revista científica Nature Energy explica como os resultados foram obtidos graças a um novo processo de fabricação que usa um absorvente GaAs com uma espessura de 205 nanômetros depositados em um espelho nanoestruturado.

"Nossa idéia principal era projetar um espelho nanoestruturado que criaria várias ressonâncias sobrepostas na célula solar", disse Fraunhofer ISE. Essas ressonâncias capturam a luz no absorvedor e melhoram a absorção óptica em uma faixa espectral que se estende do visível ao infravermelho (correspondente ao espectro solar).

O espelho traseiro, feito de prata, foi esculpido em nanoescala por nanoprinting, aplicando uma película sol-gel derivada de dióxido de titânio. "Controlar a fabricação de espelhos em nanoescala é o que tornou o projeto possível", afirmou a equipe de pesquisa.

Em seu estudo, intitulado "Tecnologia Fotovoltaica e Concentradora III-V", os pesquisadores também afirmam que suas células solares podem atingir um rendimento de 25% e que sua espessura pode ser reduzida ainda mais sem perda de eficiência.

Os custos de fabricação de células solares III-V continuam caindo

Laboratório Nacional de Energia Renovável dos EUA UU. relatórios sobre novos avanços na redução do custo das células solares III-V. Os cientistas refinaram sua tecnologia D-HVPE 'nova e com 50 anos de idade' para aumentar o rendimento de células solares de arseneto de gálio por um fator superior a 20. O desenvolvimento é um passo potencial para reduzir o custo de As células solares são incrivelmente eficientes para fins cotidianos.

Dennis Schroeder / NREL

O arseneto de gálio (GaAs) e outros materiais III-V, nomeados de acordo com os grupos aos quais pertencem na tabela periódica, estão entre os mais conhecidos em termos de potencial de eficiência para células solares. Mas o custo até agora os limitou a aplicações que alimentam satélites e drones.

No ano passado, cientistas do Laboratório Nacional de Energia Renovável (NREL) nos Estados Unidos começaram a trabalhar com um processo chamado epitaxia dinâmica em fase de vapor de hidreto (D-HVPE), que muitos na comunidade de P&D solar eles consideram obsoletos e ineficientes e descobriram que isso poderia reduzir bastante o tempo de produção das células, reduzindo significativamente os custos. De acordo com Kelsey Horowitz, do NREL Strategic Energy Analysis Center, com mais otimizações para o processo e as economias de escala, o custo de produção de células solares III-V atualmente pode cair entre US $ 0,20 e US $ 0,80 / W.

O NREL publicou os detalhes da primeira dessas otimizações. Em um artigo publicado na Nature Communications , os cientistas relatam uma taxa de crescimento aprimorada para uma camada base de cerca de 23 segundos, em comparação com mais de oito minutos no processo anterior. "Se pudermos reduzir custos, isso abriria muitos mercados onde esses dispositivos seriam úteis", disse Aaron Ptak, cientista sênior da NREL. "Em qualquer lugar que você precise de um dispositivo de alta eficiência, fino, leve e flexível, como estojos de carregamento eletrônico, veículos elétricos, sistemas fotovoltaicos embutidos em prédios, telhados, drones".

Mais de 29% de eficiência

O processo D-HVPE já produziu células com 25% de eficiência. A equipe da NREL espera atingir 27% usando seu design e diz que as maiores eficiências já alcançadas com taxas de crescimento muito mais lentas não devem estar fora de alcance. "Fundamentalmente, não vemos nenhuma razão pela qual não possamos alcançar eficiências de MOVPE superiores a 29%", disse o co-autor do documento Kevin Schulte, referindo-se ao processo de epitaxia na fase de vapor orgânico metálico. "Existem alguns obstáculos técnicos que precisamos eliminar para chegar lá, mas estamos trabalhando neles."

A equipe usou o D-HVPE para cultivar camadas de GaAs a uma taxa de até 320 micrômetros por hora e 206 micrômetros por hora para fosfeto de índio-gálio, usado como uma camada passivadora nas células GaAs e como uma camada absorvente de GaAs. luz Os pesquisadores da NREL também disseram que o processo elimina muitos dos materiais caros necessários na produção do MOVPE.

"O que prometemos é a mesma eficiência do dispositivo, a mesma qualidade do material, mas a um custo muito baixo", acrescentou Ptak. "As altas taxas de crescimento que levam ao alto desempenho são uma das maneiras pelas quais vamos reduzir custos".

Nada pode derrubar o preço das células solares III-V - basta adicionar germânio

Um artigo de pesquisa de cientistas do Laboratório Nacional de Energia Renovável dos EUA descreve uma nova abordagem para a produção de células à base de arsenieto de gálio. A abordagem, denominada “germânio em nada”, poderia permitir a produção rentável e em alto volume de células fotovoltaicas baseadas em materiais III-V, como o arseneto de gálio.

Uma célula solar flexível de GaAs criada por cientistas da NREL em fevereiro. 
Imagem: Dennis Schroeder / NREL.

Cientistas do Laboratório Nacional de Energia Renovável dos Estados Unidos (NREL) e do Instituto Avançado de Ciência e Tecnologia da Coreia demonstraram um método de produção de células solares de arsenieto de gálio (GaAs) com um substrato de germânio reutilizável. Os pesquisadores dizem que a técnica leva o potencial de células de GaAs produzidas de forma barata um passo mais perto.

Células feitas a partir de tais materiais são bem conhecidas pelo seu forte desempenho e eficiência - o NREL trabalhou anteriormente com a Microlink Devices, sediada em Chicago, para produzir uma célula de três junções com um recorde de eficiência de conversão de 37,75%.

No entanto, o custo de produzir esses dispositivos os confinou a aplicações de nicho, como drones e satélites, onde o baixo peso e a alta eficiência são preocupações mais prementes do que o custo em relação à energia produzida. Várias empresas e institutos de pesquisa, no entanto, estão trabalhando em métodos para reduzir os custos de produção de GaAs e células solares III-V - que incluem materiais desses grupos da tabela periódica - a níveis aceitáveis ​​para a produção comercial.

A abordagem do 'germânio sobre nada' tomada pela equipe, descrita no artigo Germânio-em-Nada para o Levantamento Epitaxial de Células Solares de GaAs - publicado na revista Joule - envolve a criação de uma fina camada de germânio em um wafer de germânio. o crescimento de uma célula de GaAs no topo da camada fina. Ambos os níveis são então retirados do wafer de germânio, permitindo que ele seja reutilizado como substrato. O processo cria uma série de poros na pastilha de germânio cujo tamanho e distribuição permitem uma abertura - o "nada" - entre o germânio fino e a bolacha.

O substrato reutilizável reduz os custos

Usando o processo, a equipe produziu uma célula solar de 14,44% de GaAs. David Young, cientista sênior do grupo de fotovoltaicos cristalinos de alta eficiência da NREL, disse que as otimizações no processo podem trazer eficiências bem acima de 20%. "Esta é a primeira vez que GON [germânio em nada] foi demonstrado com uma superfície suficientemente lisa para permitir o crescimento epitaxial de alta qualidade de GaAs", disse ele.

O NREL estima que os substratos semicondutores para o crescimento celular representam cerca de 30% do custo de uma célula solar III-V. Um substrato reutilizável pode trazer uma economia significativa. O laboratório, no entanto, não indicou quantas vezes o wafer de germânio poderia ser reutilizado e não forneceu uma estimativa dos custos que podem ser alcançados com o processo, afirmando apenas que “esta técnica poderia permitir o custo efetivo e alto volume. produção de células solares simples e multijunções III-V”.

O processo desenvolvido pela Microlink, que produziu a célula eficiente de 37,75% no ano passado, baseou-se em um substrato de arsenieto de gálio que também pode ser reutilizado para reduzir custos, mas não há alegação de que a tecnologia possa contribuir significativamente para a produção econômica.