Mostrando postagens com marcador EUA. Mostrar todas as postagens
Mostrando postagens com marcador EUA. Mostrar todas as postagens

ALTA TAXA DE CRESCIMENTO PROJETADA PARA A INDÚSTRIA DE RESÍDUOS PARA ENERGIA

A indústria de resíduos em energia (WtE) está vendo um potencial de crescimento significativo. Algumas estimativas de crescimento previsto indicam que a indústria crescerá a uma taxa composta de crescimento anual (CAGR) de mais de sete por cento até 2024.


Outros mostram um CAGR estimado de cerca de cinco por cento até 2028. Apesar disso, o crescimento do WtE está previsto para ser alto e terá um impacto contínuo na indústria de resíduos e reciclagem.

Potencial de crescimento

As tecnologias WtE atuais destroem ou capturam toxinas do lixo, incluindo chumbo, mercúrio, compostos orgânicos voláteis, halogênios e outros poluentes, filtram produtos químicos prejudiciais, eliminam o odor do aterro sanitário e destroem resíduos contaminados.

De acordo com Megan Wilson, vice-presidente de desenvolvimento corporativo e relações com investidores da Babcock & Wilcox, o crescimento da indústria de transformação de resíduos em energia é impulsionado por vários fatores, e esses fatores podem diferir por região. Na Europa, especialmente no Reino Unido, Escandinávia e outros países da UE, as ações regulatórias têm incentivado menos dependência de deposição de resíduos urbanos em aterros até e incluindo a proibição de novos aterros.

Há um forte senso de responsabilidade social em alguns países que impulsiona os esforços de reciclagem e conservação do solo.

“As usinas de transformação de resíduos em energia se encaixam bem com essa ética porque incentivam a reciclagem e colocam os resíduos não recicláveis ​​em uso benéfico na geração de energia de base e, ao mesmo tempo, protegem o meio ambiente”, disse Wilson. As usinas de transformação de resíduos em energia que a Babcock & Wilcox construiu para seus clientes apresentam controles de poluição de última geração, permitindo que essas usinas gerem energia de base ou forneçam aquecimento urbano, ou ambos, e o façam enquanto controlam as emissões ambientais.

Nos Estados Unidos, existem cerca de 70 plantas WtE atualmente em operação, o que é muito menos do que na Europa. Como Wilson explicou, nos Estados Unidos, os aterros sanitários são mais abundantes e o custo econômico dos resíduos do aterro (sem contar o custo ambiental) é muito menor do que na Europa.

“Ao mesmo tempo, também estamos vendo uma resistência contra a construção de novos aterros nos Estados Unidos porque o público está se tornando mais preocupado com o impacto de longo prazo de enterrar o lixo no solo e uma sensação cada vez maior de que podemos fazer um trabalho melhor de reduzir a quantidade de resíduos que produzimos, reciclando, reutilizando e colocando os resíduos que geramos em um uso benéfico ”, disse Wilson.

Os EUA estão vendo uma discussão cada vez maior por legisladores e legisladores sobre as emissões de metano de aterros sanitários e outras fontes. “O metano é freqüentemente ignorado porque tem vida mais curta na atmosfera do que o dióxido de carbono; no entanto, tem um impacto poderoso ”, disse Wilson. “De acordo com o Painel Intergovernamental sobre Mudanças Climáticas das Nações Unidas, o metano tem aproximadamente 84 vezes o Potencial de Aquecimento Global (GWP) do dióxido de carbono em 20 anos. Em termos de Potencial de Aquecimento Global, o metano é responsável por quase um quarto das emissões dos EUA. Aproximadamente um quinto do total das emissões de metano dos EUA provenientes da atividade humana é gerado a partir de aterros sanitários. Não podemos lidar com a mudança climática sem lidar com o metano dos aterros. ”

De acordo com a EPA, há mais de 2.600 aterros sanitários municipais ativos e 3.200 inativos nos EUA. Esses locais emitem coletivamente metano que soma mais de 330 milhões de toneladas de GWP com base em 20 anos a cada ano - aproximadamente igual às emissões de 70 milhões de carros .

“Este problema continua a crescer à medida que mais 140 milhões de toneladas de resíduos são adicionadas aos aterros sanitários anualmente”, disse Wilson.

Como David Roeder, diretor de transição de resíduos da Ecofin explicou, há movimentos pró-reciclagem e anti-aterro em ação simultaneamente.

“Embora tenhamos feito reciclagem e outras iniciativas de redução de resíduos nos EUA por décadas, a força motriz por trás dos esforços crescentes nessas áreas nos últimos anos (e daqui para frente) é o cumprimento das metas de descarbonização e redução de emissões de GEE”, Roeder disse. Simplificando, os resíduos podem ser transformados em uma fonte de energia renovável com menor intensidade de carbono do que os combustíveis fósseis, com emissões reduzidas de GEE. E, há uma confluência de fatores que contribuem para o crescimento deste setor.

Como Roeder apontou, há vários mandatos governamentais em jogo que estão afetando a mudança em direção a mais instalações WtE, incluindo: Padrões federais para combustíveis renováveis ​​feitos de resíduos; processos de licenciamento cada vez mais difíceis para aterros novos ou ampliados; proibições estaduais e locais sobre a introdução de orgânicos em aterros sanitários em um esforço para reduzir a produção de metano do aterro; e padrões de portfólio renováveis ​​exigidos pelo estado para serviços públicos.

“As melhorias tecnológicas também tornaram a transformação de resíduos em energia mais prática e econômica em escala para muitos tipos diferentes de resíduos orgânicos, incluindo resíduos agrícolas, alimentares e florestais”, disse Roeder. Há uma forte demanda por energia derivada de resíduos de clientes governamentais e comerciais, principalmente como forma de reduzir as emissões de GEE das frotas de transporte, bem como de clientes varejistas. Além disso, existem fortes incentivos de crédito de combustível em vigor que fornecem receitas significativas para estimular ainda mais a produção de energia a partir de resíduos.

“Finalmente, as melhorias tecnológicas ampliaram significativamente a energia produzida, do que era simplesmente eletricidade - da incineração de lixo (também conhecido como dinheiro para o lixo) - para uma ampla variedade de energias renováveis, como gás natural renovável, diesel renovável, combustível de aviação sustentável , pellets de madeira renováveis ​​e hidrogênio renovável ”, disse Roeder. “Com mais aplicações potenciais para energia renovável, há um apetite maior para converter resíduos em energia. E essas aplicações adicionais ampliaram o setor de resíduos em energia muito além de projetos meramente localizados em aterros sanitários, para projetos autônomos que evitam que os resíduos cheguem a um aterro.”

Roeder acrescentou um comentário adicional: “As próprias ambições das corporações de reduzir a quantidade de resíduos que vão para o aterro para obter um desempenho ESG mais alto e seus clientes que exigem menos resíduos desnecessários estão desviando os resíduos do aterro para WtE. Essa tendência ainda está em seus estágios iniciais e tem um longo caminho para o crescimento da WtE. ”

Impactos na indústria de reciclagem

Uma coisa sobre a transformação de resíduos em energia que costuma ser esquecida é como ela complementa os programas de reciclagem. As comunidades dos Estados Unidos com instalações de transformação de resíduos em energia realmente veem as taxas de reciclagem aumentar, enquanto a dependência de aterros sanitários diminui.

“Isso porque as tecnologias de combustão de resíduos em energia podem usar resíduos que de outra forma não poderiam ser reciclados - entulhos de construção, plásticos não recicláveis, resíduos perigosos, destroços de tempestades de furacões, madeira e outros materiais - e usá-los como combustível”, Wilson disse. “Os metais podem ser recuperados do processo de transformação de resíduos em energia e os subprodutos desse processo também podem ser reaproveitados, como o asfalto para a construção de estradas. A conversão de resíduos em energia apoia a reciclagem e a economia circular. ”

Robert Laswell, um especialista em energia renovável e sustentabilidade com mais de 10 anos de experiência no espaço de energia solar e renovável, disse que a WtE deve ter um impacto positivo, pois a iniciativa WtE fornece outra alternativa para a indústria de energia, onde grandes investimentos são feitos para para reduzir nossas emissões de GEE.

“O desenvolvimento da tecnologia do conceito WtE e a reciclagem serão a razão de grandes passos na direção de onde podemos reutilizar e converter os resíduos em uma forma utilizável de bens”, disse Laswell. “Essas duas técnicas de gestão de resíduos não têm impacto uma sobre a outra simplesmente porque podem usar diferentes tipos de resíduos.”

Roeder disse que, a curto prazo, para aterros mais antigos e maiores que já produzem quantidades significativas de metano a partir de produtos orgânicos em decomposição, eles podem obter fluxos de receita de royalties com a conversão do metano capturado em eletricidade ou gás natural renovável para venda.

“Esses são frequentemente acordos de 10 a 20 anos que fornecem uma fonte adicional de estabilidade financeira de longo prazo para o aterro sanitário participante”, disse Roeder. A longo prazo, espera-se que a tonelagem do aterro seja adversamente impactada por várias iniciativas atuais, como proibições de introdução de produtos orgânicos, redução do conteúdo de embalagem e estratégias de desvio de resíduos.

Como uma compensação parcial para diminuir a tonelagem de entrada em uma base relativa, Roeder apontou que é amplamente esperado que haverá muito menos licenças de aterro emitidas, o que deve aliviar parte do risco competitivo de base geográfica atual.

“Para empresas de reciclagem que atualmente se concentram em papel, plásticos e metais, existem oportunidades para ampliar suas operações de processamento de resíduos para lidar com resíduos que serão desviados para o setor de energia”, disse Roeder. “Acreditamos que é um cenário realista ver uma consolidação e integração na indústria de gestão de resíduos, em que grandes players oferecem uma gama completa de serviços para empresas e municípios, ou seja, reciclagem, transformação de resíduos em energia e aterro, em vez de se concentrar apenas em uma saída para resíduos. ”

O maior desafio para a reciclagem de resíduos sempre foi como conseguir um processo eficiente de separação e coleta, ao mesmo tempo em que superava os problemas de contaminação. Isso também desempenha um papel nos processos WtE. “Tão verdadeiro quanto isso tem sido para vidro, garrafas de plástico e latas de alumínio, também será verdade - talvez ainda mais - para orgânicos como resíduos relacionados com alimentos, resíduos de madeira e resíduos verdes / de jardim, que coletivamente respondem por quase 60 por cento de resíduos depositados em aterros nos EUA de acordo com a EPA ”, disse Roeder. “Um processo separado e único provavelmente será necessário para lidar com esses resíduos orgânicos de forma eficaz.”

Outra parte crucial da iniciativa WtE é educar as pessoas e as indústrias sobre qual é a forma mais eficiente de descarte de resíduos. Laswell disse que coletar os resíduos separadamente é o primeiro passo crucial que deve ser alcançado. Assim que todas as indústrias e famílias começarem a estar cientes da importância da coleta seletiva, toda a iniciativa terá sucesso.

“A educação nesse assunto específico lhes dará conhecimento, porque todos nós temos que nos preocupar com nossos resíduos”, disse Laswell. “Temos que começar com as indústrias que mais geram resíduos, que receberão um plano de gerenciamento de resíduos exato e como cada resíduo deve ser tratado. Simultaneamente, as pessoas também devem estar perfeitamente cientes de como seus resíduos devem ser descartados para obter os benefícios deles. ”

Progresso contínuo

Wilson vê um enorme potencial de crescimento em energia renovável, incluindo transformação de resíduos em energia. Babcock & Wilcox está atualmente buscando oportunidades de WtE nos Estados Unidos, Caribe, América do Sul, América Latina, Ásia, Europa e Oriente Médio.

“Além da combustão de resíduos para geração de calor e energia, também vemos um crescente potencial de mercado futuro para combustíveis derivados e sintetizados criados a partir de resíduos sólidos urbanos, como gás de síntese, etanol ou hidrogênio, que podem ser usados ​​para gerar energia, abastecer veículos e aplicações industriais ”, Disse Wilson.

O especialista em materiais sustentáveis ​​da PA Consulting, Tony Perrotta, disse que será necessário prestar muita atenção ao cenário regulatório em mudança, bem como à fronteira de tecnologia enfrentada pela indústria de WtE. Por exemplo, há um interesse crescente em combustíveis sintéticos e processos de resíduos em combustíveis, mas o envolvimento do governo será fundamental nessas áreas.

“Uma série de alavancas globais estão se combinando para mostrar suporte para o crescimento do segmento WtE”, disse Perrotta. “Você tem uma quantidade sem precedentes de resíduos compostos por uma infraestrutura de reciclagem levada ao limite. Combine isso com uma aversão crescente pela exportação de resíduos e uma sede quase infinita por energia e o crescimento faz sentido. ”

No momento, a maioria das plantas WtE dos EUA está localizada ao longo da costa leste, especialmente nos estados da Flórida e da Nova Inglaterra, onde os resíduos de aterro são mais caros ou ambientalmente problemáticos.

“Achamos que pode haver um mercado para transformação de resíduos em energia em todo o país”, disse Wilson. “Em nossas conversas com os legisladores, enfatizamos que, como parte de uma política abrangente de energia limpa, o governo dos EUA deve tomar medidas para incentivar a redução das emissões de metano dos aterros, construindo novas usinas WtE e apoiando a reciclagem.”

por MAURA KELLER da American Recycler

O controverso futuro da energia nuclear nos Estados Unidos

À medida que a crise climática se agrava, cada vez mais se discute o papel da energia nuclear no combate a esse problema.

Dois reatores nucleares em construção na Usina Vogtle, no estado da Geórgia, nos Estados Unidos. O empreendimento estourou o orçamento em bilhões de dólares e está atrasado há anos.
FOTO DE GEORGIA POWER COMPANY

O presidente Joe Biden estabeleceu metas ambiciosas para conter as mudanças climáticas: reduzir pela metade as emissões de carbono dos Estados Unidos até 2030 e zerar as emissões líquidas de carbono em sua economia até 2050. O plano prevê que, até 2035, a geração de energia elétrica se torne uma atividade que não emite carbono. De acordo com analistas, esse é o setor econômico mais fácil de ser transformado em ecologicamente correto.

De onde virá toda essa energia elétrica limpa?

Alguns números da Agência de Administração de Informações de Energia dos Estados Unidos (EIA) ilustram o desafio. Em 2020, os Estados Unidos geraram cerca de quatro trilhões de quilowatts-hora de energia elétrica. Cerca de 60% foram produzidos com a queima de combustíveis fósseis, principalmente gás natural, em cerca de 10 mil geradores, de grande e pequeno porte, em todo o país. Toda essa energia elétrica precisará ser substituída — e sua produção também precisará aumentar, pois a demanda por eletricidade deve ser maior, principalmente se for utilizada para abastecer mais carros.

Fontes de energia renováveis, como energia solar e eólica, cresceram mais rápido do que o esperado. Somadas à energia hidrelétrica, ultrapassaram o carvão pela primeira vez em 2019 e agora produzem 20% da energia elétrica dos Estados Unidos. Em fevereiro, a EIA projetou que as energias renováveis seriam responsáveis por mais de 40% da produção até 2050 — um crescimento notável, talvez, mas ainda bastante aquém do necessário para uma rede elétrica sem carbono até 2035 e para impedir a crise climática.

Esse enorme desafio recentemente levou alguns ambientalistas a reconsiderarem uma alternativa vista há muito tempo com desconfiança: a energia nuclear.

Em outubro de 2020, um rotor de turbina foi instalado na Unidade 4 da Usina Vogtle, um dos dois reatores em construção. FOTO DE GEORGIA POWER COMPANY

A energia nuclear tem muito a seu favor. Sua pegada de carbono é equivalente à da energia eólica, menor do que a da solar e, em ordens de magnitude, menor do que a do carvão. As usinas nucleares ocupam muito menos espaço na paisagem do que as usinas solares ou eólicas e produzem energia também à noite ou em dias sem vento. Em 2020, elas geraram a mesma quantidade de energia elétrica nos Estados Unidos que as energias renováveis, um quinto do total.

Mas muitos discutem se a energia nuclear deve representar grande parte da solução climática nos Estados Unidos. Hoje, o projeto da maioria das usinas nucleares norte-americanas está ficando obsoleto e apenas uma foi construída nos últimos 20 anos. Os defensores da energia nuclear agora estão apostando em projetos de última geração, como versões menores e modulares de reatores convencionais de água leve ou reatores avançados projetados para serem mais seguros, mais baratos e mais flexíveis.

“Inovamos tão pouco nos últimos 50 anos, que ainda temos muito pela frente”, diz Ashley Finan, diretora do Centro Nacional de Inovação em Reatores do Laboratório Nacional de Idaho.

No entanto, a expansão da energia nuclear esbarra em alguns obstáculos importantes, e as eternas preocupações com segurança e resíduos radioativos podem não ser os mais significativos: os críticos também afirmam que os reatores nucleares são simplesmente muito caros e sua construção é demorada para serem de alguma utilidade na crise climática.

O presidente Dwight Eisenhower fez o discurso “átomos pela paz” antes da Assembleia Geral das Nações Unidas em 8 de dezembro de 1953, oito anos depois de duas cidades japonesas terem sido destruídas pelas bombas atômicas norte-americanas e enquanto os Estados Unidos e a União Soviética se preparavam para uma guerra nuclear.
FOTO DE IAEA IMAGEBANK, UNITED NATIONS, NEW YORK

Bombas em relhas de arado

Um reator de teste no Laboratório Nacional de Idaho, onde Finan agora trabalha, produziu energia elétrica a partir de energia nuclear pela primeira vez em 1951. O feito não demorou a ser enaltecido no famoso discurso do presidente Dwight Eisenhower “átomos pela paz” nas Nações Unidas em 1953. Arjun Makhijani, físico nuclear que dirige o Instituto de Pesquisa Energética e Ambiental (IEER), um instituto sem fins lucrativos, ressalta que o discurso foi feito logo após um teste termonuclear na União Soviética, quando o medo da bomba atômica estava no auge.

“Basicamente, ele disse que o tema era muito triste e sombrio — queria dizer algo positivo”, explica Makhijani. O discurso de Eisenhower deu início a uma nova era nuclear: o interesse global por esse tipo de energia aumentou significativamente e países ao redor do mundo começaram a construir grandes reatores, muitas vezes com tecnologia e know-how dos Estados Unidos.

Em 1996, a energia nuclear fornecia 17,6% da energia elétrica mundial. Hoje, esse número caiu para cerca de 10%. O acidente de Fukushima em 2011 foi uma das principais razões para esse declínio. Os 48 reatores nucleares do Japão permanecem praticamente desativados desde então. A Alemanha desativou 11 de seus 17 reatores e pretende desativar os seis restantes até 2022. A Bélgica, a Espanha e a Suíça também estão encerrando seus programas nucleares.

Os Estados Unidos, de longe o maior produtor mundial de energia elétrica por termonucleares, têm atualmente 94 reatores em 28 estados. Mas após o acidente na Usina Three Mile Island em 1979, quando um reator quase derreteu por completo perto de Middletown, no estado da Pensilvânia, o entusiasmo pela energia nuclear diminuiu.

O tempo médio de operação das usinas norte-americanas é de 39 anos e elas têm autorização para operar por 40 anos. Na última década, pelo menos cinco foram desativadas antes do previsto, em grande parte porque os custos de manutenção e fontes de energia mais baratas tornaram sua operação muito dispendiosa.

O fechamento mais recente ocorreu na semana passada, em 30 de abril, quando o segundo dos dois reatores foi desligado na usina de Indian Point, no rio Hudson, ao norte da cidade de Nova York. Até alguns anos atrás, esses reatores forneciam um quarto da energia da cidade. Em todo o país, a EIA prevê que a geração de energia nuclear diminua 17% entre 2018 e 2025.

Em uma cerimônia de agradecimento aos trabalhadores da usina nuclear de Indian Point, capacetes foram pendurados em uma cerca para representar a perda de empregos. A usina, que já forneceu um quarto da energia da cidade de Nova York, fechou em 30 de abril de 2021.
FOTO DE KENA BETANCUR, GETTY IMAGES

Atrasos e gastos acima do orçamento

Embora a oposição de ambientalistas possa ter sido o principal fator que impediu o desenvolvimento nuclear nas décadas de 1980 e 1990, atualmente o maior desafio podem ser os custos. Poucas usinas nucleares foram construídas nos Estados Unidos recentemente porque sua construção no país é muito cara, o que eleva o preço desse tipo de energia.

Jacopo Buongiorno, professor de ciência nuclear e engenharia do MIT, liderou um grupo de cientistas que recentemente concluiu um estudo de dois anos sobre o futuro da energia nuclear nos Estados Unidos e na Europa Ocidental. Eles constataram que “sem redução de custos, a energia nuclear não terá um papel significativo” na descarbonização do setor de energia.

“No Ocidente, a indústria nuclear perdeu substancialmente sua capacidade de construir grandes usinas”, diz Buongiorno, apontando para o esforço da Southern Company em adicionar dois novos reatores à Usina Vogtle em Waynesboro, Geórgia. Eles estão em construção desde 2013, já ultrapassaram o orçamento em bilhões de dólares — o custo mais que dobrou — e o cronograma das obras está atrasado. Na França, classificada em segundo lugar depois dos Estados Unidos em geração de energia nuclear, um novo reator em Flamanville registra um atraso de dez anos e está mais de três vezes acima do orçamento.

“Claramente perdemos o know-how da construção de usinas nucleares tradicionais em escala de gigawatts”, afirma Buongiorno. Como nenhuma nova usina é construída nos Estados Unidos há décadas, fato constatado por ele e seus colegas, as equipes que trabalham em um projeto como o da Vogtle não passaram pelo processo de aprendizado necessário para realizar o trabalho com eficiência. Isso causa atrasos no cronograma das obras e, consequentemente, aumento dos custos.

Em outros lugares, os reatores ainda são construídos a um custo mais baixo, “principalmente em locais onde as obras ficam dentro do orçamento e do cronograma”, explica Finan. A China e a Coreia do Sul são os países onde isso mais acontece. (Sem parcialidade, diversos reatores em grande escala da China também estouraram o orçamento e apresentaram atrasos.)

“Na Ásia, o custo da energia nuclear representa um quarto, ou menos, da energia produzida nos novos empreendimentos do Ocidente”, diz Finan. A mão de obra muito mais barata é um dos motivos, de acordo com Finan e o relatório do MIT, mas a gestão de projetos mais eficiente também tem grande influência.

O estudo do MIT sugere que padronizar projetos de reatores e construir o mesmo reator repetidas vezes são essenciais para redução dos custos. Os pequenos reatores modulares (SMRs na sigla em inglês) podem ser uma saída. A produção desse tipo de reator normalmente não ultrapassa 300 megawatts, comparado aos 1.000 megawatts de uma usina nuclear tradicional. O tamanho reduzido, explica Buongiorno, pode permitir que os componentes desses reatores sejam construídos em fábricas, possibilitando economias na produção e reduzindo o cronograma das obras e os imprevistos. Além disso, os pequenos reatores podem ser utilizados individualmente ou combinados para formar uma única grande usina.

Nos Estados Unidos, uma empresa chamada NuScale teve a certificação de projeto de seu SMR aprovada pela Comissão Reguladora Nuclear, a primeira e única empresa a obter essa certificação. Seu reator é uma versão em miniatura de um reator tradicional, no qual a água pressurizada resfria o núcleo onde ocorre a fissão nuclear. Mas no projeto da NuScale, o reator inteiro fica imerso em uma piscina para protegê-lo de um derretimento acidental.

A empresa NuScale prevê construir 12 desses reatores para produzir 720 megawatts no Laboratório Nacional de Idaho como projeto piloto. Ela recebeu financiamento do Departamento de Energia dos Estados Unidos (DOE), que aprovou o valor de até US$ 1,4 bilhão para ajudar a apresentar a tecnologia. A NuScale planeja vender a usina para um consórcio de energia chamado Utah Associated Municipal Power Systems.

No ano passado, oito das 36 concessionárias do consórcio desistiram do projeto, culpando os custos. A empresa anunciou recentemente que o projeto seria adiado para 2030 e o custo aumentaria de US$ 4,2 bilhões para US$ 6,1 bilhões.

Aqueles que são contra o uso de energia nuclear citam essa última decepção como mais um exemplo do motivo de a energia nuclear não estar à altura da tarefa.

“Se o primeiro SMR não for construído até o fim da década de 2020, e for necessário ativá-lo e ainda estruturar toda uma nova cadeia de abastecimento global, será possível zerar as emissões até 2035?” pergunta Makhijani do IEER. “Não dará tempo de fazer uma contribuição significativa.” Ele acrescenta que o extenso histórico de custos extras e atrasos do setor é especialmente problemático quando se considera os compromissos climáticos. “Não há espaço para erros graves.”

A usina nuclear de San Onofre foi fechada em 2013, levando a um aumento nas emissões de dióxido de carbono na Califórnia. FOTO DE MIKE BLAKE, REUTERS

Uma rede variável e incerta

Em uma rede elétrica, o fornecimento deve corresponder precisamente à demanda em constante oscilação. Atualmente, não há grandes reservatórios para armazenamento de elétrons, como os que temos para água. As energias renováveis dificultam esse equilíbrio porque a quantidade de energia elétrica produzida varia — quando está nublado ou não está ventando, a rede precisa de mais energia proveniente de outras fontes.

O futuro da energia nuclear dependerá, em parte, de sua capacidade de equilibrar uma rede que depende cada vez mais de fontes renováveis. A energia nuclear é tradicionalmente considerada uma fonte de energia de carga básica — os reatores funcionam na maior parte do tempo para que os altos custos fixos sejam distribuídos pelo maior número de quilowatts-hora. Ao contrário das turbinas a gás, que podem ser ligadas e desligadas em segundos para “acompanhar a demanda”, os reatores levam uma hora ou mais para reduzir sua produção pela metade.

Não é que os reatores não conseguem acompanhar a demanda; eles são apenas mais lentos. “Eles conseguem e fazem porque é preciso”, explica Buongiorno. “Só que nunca é uma proposta econômica atraente.”

No fim de 2020, o DOE concedeu US$ 80 milhões a duas empresas que trabalham em projetos de reatores avançados destinados, em parte, a solucionar esse problema. A primeira, TerraPower, startup fundada por Bill Gates, está trabalhando em um reator refrigerado a sódio que, em vez de utilizar seu calor diretamente para acionar uma turbina e gerar eletricidade, armazena-o em um tanque de sal fundido, onde pode ser aproveitado para gerar energia elétrica quando necessário.

A segunda concessão foi destinada a uma empresa chamada X-energy com um reator refrigerado a gás que opera em temperaturas extremamente altas, produzindo vapor que pode ser utilizado em processos industriais e também para a geração de energia elétrica. Essa capacidade de “alteração da carga”, afirmam Finan e Buongiorno, pode ajudar os reatores nucleares a administrar a demanda variável de eletricidade — ao mesmo tempo em que ajuda a descarbonizar o setor. Reatores pequenos podem até mesmo ser instalados ao lado de uma fábrica que utiliza tanto calor quanto eletricidade. Contudo, os rejeitos radioativos de alta periculosidade produzidos por fábricas desse tipo precisariam ser transportados até uma central de gestão de resíduos.

Embora promissores, nenhum desses novos projetos está progredindo rápido o suficiente para possibilitar o cumprimento das metas de Biden. A decisão de apoiar esses dois projetos-piloto, cuja operação está prevista para até 2028, foi chamada pelos oficiais do DOE de a “estratégia mais ousada até o momento”.

Enquanto isso, há uma forma mais direta de equilibrar a variabilidade das energias renováveis: armazenar energia elétrica em baterias. O mercado de armazenamento em bateria em grande escala está explodindo: aumentou 214% em 2020. Além disso, a EIA prevê que a capacidade das baterias passe dos atuais 1,6 mil para 10,7 mil megawatts até 2023.

Makhijani acredita que a energia nuclear não será necessária para equilibrar a rede. Um estudo realizado por ele em 2016 para o estado de Maryland constatou que o aumento do armazenamento em bateria, combinado com incentivos aos consumidores para reduzir o uso de eletricidade nos horários de pico, quase permitiria às concessionárias equilibrar a variabilidade das energias renováveis.

Elas somente precisariam armazenar um pouco de energia na forma de hidrogênio, que pode ser produzido pela passagem de eletricidade renovável na água e, posteriormente, sua conversão novamente em eletricidade em uma célula de combustível. Atualmente, o processo é muito caro, diz Makhijani, mas “desde que não seja uma quantidade gigantesca, é acessível”.

Uma janela de oportunidade

A energia nuclear pode ser uma grande protagonista nas próximas décadas em todo o mundo. A China, o maior emissor de gases de efeito estufa, aumentou sua produção nuclear em 6% em 2020 e atualmente tem 17 novos reatores em construção, de acordo com o grupo comercial denominado Associação Nuclear Mundial. A Índia está construindo seis. É improvável que os Estados Unidos cheguem a esse número tão cedo.

Especialistas discordam sobre a necessidade de construir novas usinas nucleares nos Estados Unidos. Alguns modelos sugerem que seria possível, com as políticas adequadas, cumprir a meta de Biden de descarbonizar a rede até 2035 apenas com a expansão das energias renováveis.

As usinas nucleares que já existem são outra história. O benefício de mantê-las ativas por enquanto é mais amplamente aceito — embora Makhijani argumente que a energia livre de carbono poderia ser substituída com menos custos, investindo em novas fontes de energia, como a eólica e solar.

Como já foram construídos, esses reatores representam, basicamente, custos irrecuperáveis e, como a maioria está ativa há décadas, eles já se depreciaram. Ainda assim, em muitos lugares, a energia gerada por esses reatores precisa competir no mercado, o que não acontece em alguns casos. A Entergy Corporation, proprietária da usina de Indian Point, reconheceu que esse foi um dos fatores que levou à decisão de fechá-la.

A situação das usinas existentes tem grandes implicações: incluindo a Indian Point, sete gigawatts de energia nuclear correm o risco de serem interrompidos até 2026 devido à queda nos preços da energia elétrica.

“Desativar por completo as usinas nucleares elimina os ganhos com energias renováveis”, diz Buongiorno. Quando a Estação Geradora Nuclear de San Onofre, que produzia cerca de 8% da eletricidade da Califórnia, fechou em 2013, o custo local da eletricidade subiu e as emissões de dióxido de carbono na Califórnia aumentaram 9,2 milhões de toneladas no ano seguinte.

O relatório do MIT constatou que, na próxima década, a matriz energética permitirá obter a rede mais econômica e confiável possível. “Nossa análise demonstra que a melhor combinação inclui uma grande parcela de energia nuclear, uma grande parcela de energias renováveis e certa quantidade de armazenamento em baterias, possibilitando baixo teor de carbono, confiabilidade e menor custo”, afirma Buongiorno.

O que faz mais sentido para Michael Corradini, coautor do relatório e ex-diretor do Instituto de Energia de Wisconsin, são políticas federais que oferecem recompensas pelo uso de uma energia de baixo carbono e alto custo-benefício — independentemente da tecnologia. A tributação do carbono é um exemplo de política energética neutra em termos de tecnologia. Outro seria um padrão de energia renovável, do tipo proposto por Biden em seu pacote de infraestrutura. “Se o carbono for tributado, as pessoas substituirão os combustíveis por outras fontes mais econômicas”, diz Corradini.

No fim das contas, “precisamos de uma política que considere todas as opções acima”.

POR LOIS PARSHLEY
FONTE: National Geographic Brasil

Cúpula do Clima discute Energias renováveis: Solar ou eólica?



O tema foi bastante discutido na última Cúpula do Clima; Especialista afirma que uma completa a outra. Ou seja as duas fontes tem sua importância...porque quando uma diminuem a geração a outra está funcionando mantendo sempre uma geração mais linear possível.

Realizada nos dias 22 e 23 de abril e organizada pelo governo Joe Biden, dos Estados Unidos, a Cúpula do Clima ainda repercute no mundo todo devido às promessas ousadas para combater o aquecimento global.

Entre os projetos, líderes de importantes Nações afirmaram estar investindo em energias alternativas e limpas, como a eólica e solar. E por aqui? Qual o atual cenário de produção e distribuição destes tipos de energias?

É consenso dos cientistas que a energia eólica é importante porque é renovável e tem baixo impacto ambiental para a sua geração. Essa fonte de energia também está crescendo muito no Brasil.

Em 2020 o Brasil era o 8° país do mundo em termos de potência instalada de energia eólica. No início de 2021, haviam 695 parques eólicos e mais de 8.300 aerogeradores.

“Temos uma participação de 10.9% da nossa matriz energética, isso em potência instalada. Há uma previsão para 2025 de aumentar de 10.9 para 12.9’%, ou seja, 2% em 4 anos, passando de 18.482 megawatts para 23.651 megawatts”, explica Edval Delbone, coordenador do curso de Engenharia Elétrica do Instituto Mauá de Tecnologia (IMT).

A energia eólica está bem na frente da energia solar, que também é renovável. Porém a energia solar tem uma expectativa de crescimento com maior velocidade, mas ainda produz muito pouco, ou seja, enquanto a eólica está em 18.482 megawatts, a solar está em 3.958 megawatts.

Em 2020 o Brasil era o 14° país do mundo em termos de potência instalada de energia solar. Do total da matriz energética brasileira, 1,6% é produzido através de sistemas solares fotovoltaícos.

Qual a diferença entre eólica e solar?

A eólica é mais atrativa economicamente no nordeste e no sul, onde o vento tem uma velocidade bem maior comparado aos demais estados.

No estado de São Paulo é possível investir, porém ainda não é atrativo economicamente. Em relação à energia solar, o sol bate no Brasil em qualquer lugar, em qualquer estado a irradiação solar é boa, sobretudo no nordeste.

Portanto, a energia eólica depende do vento, que é mais comum na parte da tarde e de madrugada. Já a solar depende do sol, principalmente do meio dia, onde a incidência é maior e gera mais energia solar.

“Ambas são importantes e se complementam. No entanto, ainda não podemos abrir mão de outras fontes de energia firmes, como a usina hidrelétrica, no qual há reservatórios para armazenar água e energia a fim de garantir o abastecimento contínuo, até mesmo no período de estiagem, uma vez que os reservatórios estão cheios de água para produção de energia”, completa o engenheiro da Mauá.

Entendemos que as fontes renováveis sempre deram fontes assessorias as principais por questões de sua sazionalidade no tocante a precisar e depender das questões climáticas, sol e vento, para terem uma boa geração, então em qualquer intempéries climáticas como chuva que abaixa a radiação e zonas de massa de ar que diminuem as correntes de vento interferem na sua eficiência. Assim sendo precisamos sempre de um mix cada vez mais de fontes para uma maior eficiência e segurança energética do país.


Legislador de Nova York quer avaliar uso de energias renováveis para mineração cripto

Os dois projetos de lei introduzidos pelo senador Kevin Parker, nesta última semana, visam tanto a medição da emissão de carbono na mineração cripto quanto o estudo sobre o uso de fontes renováveis no setor (Imagem: Unsplash/Luca Bravo)

Um legislador de Nova York propôs um novo projeto de lei que objetiva estudar o uso de energias renováveis em mineradoras cripto no estado.

No dia 7 de maio, o senador do estado Kevin Parker introduziu o projeto de lei S6584. O projeto convoca a autoridade em energia do estado de Nova York “a conduzir um estudo sobre a alimentação de locais para mineração de criptomoedas por meio de energias renováveis”.

O projeto de lei ressalta que “centros de mineração de criptomoedas são uma indústria em expansão no estado de Nova York”, tendência essa que se provou controversa, devido às necessidades energéticas de blockchains proof-of-work (PoW), como bitcoin, e às percepções públicas quanto à emissão de carbono da rede.

Na semana passada, Parker introduziu um projeto de lei paralelo que pede a moratória de locais de mineração cripto no estado até que seus impactos ambientais possam ser medidos.

Atualmente, esse projeto de lei está aguardando a análise do Comitê de Conservação Ambiental, enquanto o projeto de lei S6584 está com o Comitê de Energia e Telecomunicações.

Há anos, o polo de mineração da rede Bitcoin para a maior parte da rede tem sido a China, mas isso está mudando.

A evolução do ecossistema global de mineração acontece ao mesmo tempo em que investidores adquirem rapidamente a quantidade limite de equipamentos de mineração disponíveis no mercado.

Ao mesmo tempo, fabricantes de hardware estão sendo impactados pela escassez global de chip gerada pelos efeitos econômicos da pandemia de coronavírus.

Criado LED que não emite a problemática luz azulada

Em vez de mascarar o azul, o LED já emite uma luz branca e quente.
[Imagem: Jakoah Brgoch]

O azul dos LEDs

As lâmpadas de LEDs (diodos emissores de luz) substituíram rapidamente as problemáticas lâmpadas fluorescentes compactas graças a uma maior eficiência energética e a uma pegada ambiental muito menor.

Mas nem tudo é perfeito, e as lâmpadas de LED que estão atualmente no mercado emitem muita luz azul, o que tem sido associado a problemas nos olhos e no sono.

Agora, pesquisadores desenvolveram um protótipo de LED que reduz - em vez de mascarar - o componente azul, ao mesmo tempo que torna as cores mais parecidas com as da luz solar natural.

Como os LEDs emitem luz

Dentro das lâmpadas, vários chips de LED semicondutor convertem a corrente elétrica em luz de alta energia, incluindo comprimentos de onda ultravioleta invisível (UV), violeta ou azul. Sobre ele, vai uma tampa contendo vários fósforos - compostos luminescentes sólidos que convertem a luz de alta energia em comprimentos de onda visíveis, de energia mais baixa.

Cada fósforo emite uma cor diferente e essas cores se combinam para produzir uma luz branca de amplo espectro. Lâmpadas de LED comerciais usam LEDs azuis e fósforos emissores de amarelo, que aparecem como uma luz branca brilhante e fria, semelhante à luz do dia.

A exposição contínua a essas luzes azuis tem sido associada à formação de catarata, e ser iluminado por elas à noite pode interromper a produção de hormônios indutores do sono, como a melatonina, provocando insônia e fadiga.

O tom azulado dos LEDs tem sido associado a vários problemas de saúde.
[Imagem: Hariyani/Brgoch - 10.1021/acsami.1c00909]

Eliminando o azul dos LEDs

Para criar uma lâmpada LED para uso noturno - com luz branca e quente -, muitos pesquisadores têm adicionado fósforos emissores de vermelho, mas isso apenas mascarou o tom azul, sem se livrar dele.

Por isso, Jakoah Brgoch e Shruti Hariyani, da Universidade de Houston, nos EUA, queriam desenvolver um fósforo evitando a problemática faixa azul de comprimentos de onda, mas mantendo uma luz branca quente.

Como prova de conceito, os dois químicos sintetizaram um novo fósforo cristalino luminescente à base de európio [(Na1.92Eu0.04) MgPO4F].

Luz branca quente

Nos testes de estabilidade térmica, a cor de emissão do composto de európio foi consistente entre a temperatura ambiente e a temperatura operacional mais alta (150 ºC) da iluminação comercial baseada em LED. Em experimentos de umidade de longo prazo, o composto não mostrou nenhuma mudança na cor ou na intensidade da luz produzida.

O novo LED produz a luz branca quente desejada (2710 K), minimizando a intensidade dos comprimentos de onda azuis, ao contrário das lâmpadas LED comerciais.

As propriedades ópticas do protótipo revelaram a cor dos objetos quase tão bem quanto a luz natural do Sol, atendendo às necessidades de iluminação interna, dizem os pesquisadores, embora acrescentem que mais trabalho precisa ser feito antes que este composto esteja pronto para comercialização.

Bibliografia:

Artigo: Advancing Human-Centric LED Lighting Using Na2MgPO4F:Eu2+
Autores: Shruti Hariyani, Jakoah Brgoch
Revista: ACS Applied Materials & Interfaces
Vol.: 13, 14, 16669-16676
DOI: 10.1021/acsami.1c00909

Pesquisadores descobriram um jeito de "rejuvenescer" as baterias de lítio


Sabe aquela sensação de que a bateria do celular está morrendo e que, a cada dia que passa, ela perde um pouco da capacidade de armazenar energia? Isso acontece porque o lítio contido nelas se torna inativo com o tempo, reduzindo sua vida útil e prejudicando o desempenho a longo prazo.

Agora, pesquisadores da Universidade Zhejiang, na China, e do Laboratório Argonne, nos EUA, criaram uma nova técnica capaz de "rejuvenescer" esse lítio “morto”. A estratégia testada pela equipe é baseada em uma reação química conhecida como redox de iodo, quando redução e oxidação ocorrem juntas, transferindo elétrons entre as substâncias.

A química explica

Durante os primeiros ciclos de carregamento, as baterias de íons de lítio produzem uma camada em seus ânodos conhecida como interfase de eletrólito sólido, que garante a eficiência, estabilidade e a segurança das células de energia.

Em uma bateria comum, como as usadas em celulares, a interfase é composta de fluoreto de lítio combinado com carbonato de lítio e carbonato de alquila. Nessas baterias, a variação constante do lítio compromete a integridade física e mecânica dos componentes, o que acaba “matando” boa parte do elemento.


Esquema de restauração do lítio "morto" (Imagem: Reprodução/Argonne Lab)

Com a nova técnica usada pelos cientistas, é possível estimar a quantidade de óxido de lítio na camada de interfase para saber qual o papel dos componentes inativos na produção do lítio isolado eletricamente, o que causa perda gradual de desempenho.

"Uma solução fundamental para recuperar o lítio morto é urgentemente necessária para estabilizar as baterias de metal de lítio”, explica o professor Chengbin Jin.

Rejuvenescimento

Em testes em laboratório, os pesquisadores descobriram que a perda de lítio na interfase e os detritos gerados nesse processo são a principal causa da queda de desempenho das baterias.


A partir destes resultados, eles apresentaram o novo método de restauração usando oxirredução de iodo para compensar a perda de lítio que ocorre entre os intervalos de carga e descarga.

Nos experimentos, os cientistas conseguiram criar uma célula de energia com uma quantidade mínima de lítio no ânodo e uma vida útil de aproximadamente mil ciclos. Com a nova técnica, a eficiência energética da bateria foi de 99,9%, provando que o iodo é capaz de recuperar a maior parte do lítio que se degrada com o tempo.

Lítio recuperado chega a 99,9% (Imagem: Reprodução/Argonne Lab)

Longa duração

Para o futuro, os pesquisadores esperam que a estratégia descoberta pela equipe do professor Jin possa ajudar no desenvolvimento de baterias mais eficientes e com uma vida útil muito superior aos 500 ou 600 ciclos que temos atualmente.

A combinação do lítio com a oxirredução de iodo pode ser o caminho para produção de células de energia que não percam a capacidade de reter carga e não precisem ser substituídas a cada dois ou três anos.

É bom para o nosso bolso e melhor ainda para o meio ambiente. Se pudesse “reviver” a bateria que não segura mais carga, você trocaria de celular com menos frequência?

Fonte: Nature Energy

Carregando vantagens para o setor de energia solar, pacote de alívio econômico de US$ 900 bilhões é aprovado pelo governo dos EUA

Segundo especialista, a atitude se caracteriza como um desenvolvimento positivo para o avanço da energia renovável no país.


Incluindo vantagens para o setor de energia solar, um pacote de alívio econômico de US$ 900 bilhões foi aprovado pelo governo dos EUA. Ratificada pelo presidente Donald Trump, a legislação espera um aumento de dois anos para o programa de crédito para investimentos em energia solar (ITC, na sigla em inglês) e para os fundos adicionais direcionados à pesquisa e ao desenvolvimento, englobando não só uma maior facilidade para o acesso aos territórios do governo federal com o objetivo de utilizá-los para propostas de energia renovável, mas também a redução de custos mais graves para instalações de energia distribuída.

Seguindo essa legislação, o ITC irá se manter em 26% para projetos fotovoltaicos, os quais terão suas construções iniciadas em 2021 e 2022. Em 2023, será reduzido a 22% e, em 2024, alcançará os 10% para projetos comerciais e irá zerar para propostas residenciais. Com prazo legal terminando em 1º de janeiro de 2026, as empresas que começarem a construção dos projetos em 2021 contarão com um prazo de quatro anos para se aproveitar do crédito, destinando-os às operações.

“Nos próximos anos, teremos a oportunidade de construir uma economia mais forte, resistente e justa, e essa ação do Congresso é um passo inicial oportuno”, afirmou Abigail Ross Hopper, CEO da Associação das Indústrias de Energia Solar dos EUA (SEIA), qualificando a medida como um desenvolvimento positivo para o avanço da energia renovável no país.

“A SEIA continuará a defender políticas que incentivem fontes renováveis e tratem da crise climática de forma a assegurar a justiça ambiental. Nós trabalharemos para que os benefícios do ITC fiquem disponíveis na forma de pagamento direto, para impulsionar o crescimento solar. Nós também precisamos criar uma política adequada de infraestrutura e garantir fundos que apoiam programas como o SolarAPP, que emite licenças para projetos fotovoltaicos de forma digital”, pontuou Hopper.

De acordo com uma pesquisa recentemente elaborada pela consultoria Wood Mackenzie e pela SEIA, é previsto que, em 2020, os EUA alcancem um crescimento de 43% em nova capacidade instalada de energia solar, ao passo que o setor se recompõe dos reflexos negativos gerados pela pandemia do novo coronavírus.

Segundo o estudo, esse aumento simboliza um recorde de 19 GW em nova capacidade instalada de energia solar no ano, carregando uma segurança quanto ao setor de geração centralizada que, após meses de incertezas, vem se reestruturando.

O segmento de usinas de grandes dimensões protagonizou o impulsionamento das instalações no período, adicionando 2.7 GW de capacidade, representando 70% do total de 3.8 GW. No segundo trimestre, o mercado residencial passou pelos maiores choques provocados pela pandemia, com instalações sofrendo uma queda para 617 MW. Apesar desse fator, sua recuperação foi parcialmente rápida, já que, no terceiro trimestre, houve um incremento sequencial de 14% devido aos 738 MW adicionados. Entretanto, esses números ainda se encontram abaixo dos valores registrados antes da pandemia.

Condado de Montana exige mineradoras de bitcoin para usar fontes de energia renováveis ​​para criptos de mineração


O condado de Missoula, localizado no estado de Montana, decidiu adotar novos regulamentos de mineração para criptocorrências. De acordo com o jornal local Missoulian, mineiros de moedas virtuais terão de usar energias renováveis ​​para alimentar suas plataformas de mineração.

Energia Renovável para Criptos Mineiros

As atividades de criptomoeda são muito caras e consomem muita energia. A energia necessária para alimentar dispositivos ASIC e outras plataformas de mineração é muito alta, o que causou alguns problemas às comunidades próximas às fazendas de mineração.

Esta é uma das razões pelas quais o Conselho de Comissários de Missoula County decidiu impor novas regras para as operações locais de mineração de criptografia. A principal razão por trás desse regulamento é “proteger” a saúde pública, a segurança, a “moral” e também o bem-estar dos moradores de Missoula.

A lei enfoca os efeitos que a mineração com criptomoedas tem sobre o aquecimento global e também sobre o lixo eletrônico. Vale a pena mencionar que as mineradoras do município também terão que estabelecer suas operações em distritos industriais após terem sido aprovadas para operar.

Vale ressaltar que as empresas que operam com moedas virtuais terão que fornecer certificação de que os resíduos eletrônicos gerados terão que ser manuseados por uma empresa licenciada pelo Departamento de Qualidade Ambiental. Essas empresas e empresas que querem minerar moedas virtuais também precisarão usar energia renovável.

As atividades de mineração que não estão em conformidade agora e que estão operando poderão continuar em operação, mas não serão autorizadas a expandir suas fábricas, a menos que se tornem compatíveis com as novas regulamentações. As novas regras entraram em vigor em abril 4 e durarão até abril 3.

Uma das empresas que atualmente opera no condado é conhecida como Hyperblock. A empresa usa um terço da eletricidade de todas as casas do condado. Ao mesmo tempo, a empresa pretende triplicar seu uso de energia no futuro próximo.

O comissário do condado Dave Strohmaier comentou sobre isso:

“POR MAIS QUE EU POSSA DIZER QUE A CRIPTOMOEDA ESTÁ USANDO EXPONENCIALMENTE MAIS ENERGIA; É UMA QUANTIDADE GROTESCA DE ENERGIA E TEMOS QUE TOMAR MEDIDAS PARA LIDAR COM ISSO. […] TEMOS QUE UTILIZAR NOVAS ENERGIAS RENOVÁVEIS ​​SE QUISERMOS TRATAR DA MUDANÇA CLIMÁTICA. ”

De acordo com o gerente da Hyperblock, Dan Stivers, eles sempre usaram energia renovável ao invés de comprar energia baseada no carvão. Além disso, Stivers explica que eles trabalham com um reciclador licenciado para lidar com o lixo eletrônico.

Como mencionado anteriormente, as operações de mineração consomem grandes quantidades de energia. As mineradoras tentam permanecer lucrativas usando as fontes mais baratas de eletricidade, que às vezes vêm do carvão e não de energias renováveis. Às vezes, as empresas de mineração de criptografia também têm usado eletricidade que antes era usada por cidades, cidades ou mesmo parques industriais, e isso está criando conflitos com as autoridades locais.

Cientistas criam líquido que armazena energia solar por quase 20 anos

A energia solar é um tipo de energia "verde" que ainda será muito explorada pela humanidade, mas uma verdade sobre ela é que armazená-la de maneira eficiente e a longo prazo ainda é algo bastante caro — um grande impeditivo para sua adoção em larga escala, inclusive. Mas cientistas da Suécia acreditam ter uma possível solução: eles desenvolveram um fluido especial que foi chamado de "combustível solar térmico", capaz de armazenar energia solar por até 18 anos.

"Um combustível térmico solar é como uma bateria recarregável, mas, em vez de eletricidade, você coloca luz solar e aquece, acionando sob demanda", explica Jeffrey Grossman, engenheiro que trabalha com esses materiais no MIT. Esse fluido, na verdade, é uma molécula em sua forma líquida na qual os cientistas da Chalmers University of Technology, na Suécia, vêm trabalhando para aprimorar há mais de um ano.

(Imagem: Chalmers University of Technology)

Tal molécula é composta de carbono, hidrogênio e nitrogênio e, quando é atingida pela luz do Sol, acontece o seguinte: as ligações entre seus átomos são rearranjadas e se transformam em uma nova versão energizada chamada de isômero. E, assim como uma presa capturada em uma armadilha, a energia do Sol, então, é capturada pelas ligações químicas do isômero, permanecendo ali mesmo após o resfriamento da molécula à temperatura ambiente.

Para gerar, então, energia elétrica para, por exemplo, um aquecedor doméstico, o fluido é extraído de um catalisador que retorna a molécula à sua forma original, processo em que há liberação de energia na forma de calor. "E quando chegamos a extrair a energia para usá-la, conseguimos um aumento de calor que é maior do que ousamos esperar", disse Kasper Moth-Poulse, cientista que participou do estudo.

Durante os testes, a equipe criou um protótipo desse sistema inovador de energia, colocando-o no telhado de um prédio da universidade. O aparato é composto por um refletor côncavo com um tubo no meio, que rastreia o Sol como uma espécie de antena parabólica. Aquecido pela luz solar, o fluido que fica em tubos transparentes transforma a molécula em seu isômero, aprisionando o calor, com o fluido, então, sendo armazenado à temperatura ambiente com perda mínima de energia durante o processo.

Segundo os pesquisadores, os resultados promissores inclusive já chamaram a atenção de diversos investidores não somente por sua eficiência, como também pelo fato de ser livre de emissões prejudiciais ao meio-ambiente. A ideia é usar essa tecnologia em sistemas domésticos de aquecimento, alimentando, por exemplo, aquecedores de água de um edifício, além de máquinas de lavar louças e secadoras de roupas. A equipe, confiante, acredita que a tecnologia possa ser disponibilizada para uso comercial dentro de dez anos.

A quem ficou curioso, o estudo foi publicado na revista Energy & Environmental Science.

Fonte: Science Alert