Perovskite Breakthrough mostra a importância do composto químico adicionado em aumentar a eficiência


Pesquisadores do relatório do Laboratório Nacional de Energia Renovável (NREL) fazem um avanço significativo ao produzir uma célula solar de perovskita em tandem que leva a tecnologia para mais perto de sua máxima eficiência.

Uma nova fórmula química está por trás do aumento na eficiência, que também melhorou as propriedades estruturais e optoeletrônicas da célula solar.

Perovskite refere-se a uma estrutura cristalina formada através da química. Diferentemente das células solares feitas de silício, suas contrapartes de perovskita podem ser flexíveis e projetadas para serem mais baratas de fabricar. As células solares de perovskita têm visto um aumento constante na eficiência, à medida que os pesquisadores continuam refinando a tecnologia. A maioria desses esforços de pesquisa se concentrou em perovskitas baseadas em chumbo que possuem um bandgap amplo. 

Perovskitas de baixa eficiência e baixo bandgap permitiriam a fabricação de células solares tandem all-perovskite de alta eficiência, onde cada camada absorve apenas uma parte do espectro solar e é idealmente configurada para converter essa luz em energia elétrica. No entanto, as perovskitas com bandgap baixo sofreram grandes perdas de energia e instabilidade limitando seu uso em tandems.

Os esforços que os cientistas do NREL fizeram para estreitar o bandgap, substituindo parte dos átomos de chumbo na estrutura da perovskita, trouxeram a recém-refinada célula solar de perovskita de baixo band-gap para uma eficiência de cerca de 20,5%. Seus resultados estão detalhados no novo artigo, “Carpet lifexies of> 1μs em Sn-Pb perovskitas permitir eficiente all-perovskite tandem células solares”, que aparece na Science.


"Esta vai ser uma área de pesquisa ativa nos próximos anos", disse Kai Zhu, cientista sênior do NREL e autor correspondente do artigo.

Substituir chumbo (Pb) em células solares de perovskita, pode restringir o bandgap. Adicionar estanho (Sn), no entanto, cria outros problemas. A rápida cristalização e oxidação do estanho cria furos e outros defeitos em filmes finos de perovskita à base de Sn.

Uma célula solar em série utilizando camadas de perovskitas mantém a eficiência máxima teórica de mais de 30%. Para alcançar isso, a camada de baixo absorvedor de bandgap por si só deve estar entre 21% e 23% de eficiência. As células solares baseadas em uma mistura de chumbo-estanho relataram eficiências de cerca de 19%, em comparação com entre 21% e 24% para suas contrapartes de chumbo puro.

Para compensar os efeitos do estanho na mistura, os cientistas da NREL introduziram o composto químico tiocianato de guanidínio (GuaSCN). Depois de descobrir como 7% de GuaSCN era a quantidade ideal para reduzir os defeitos consideravelmente, eles validaram essas descobertas para tornar a célula solar mais eficiente de outra maneira importante. As células solares geram eletricidade usando a luz para “excitar” os elétrons. Quanto mais tempo os elétrons ficarem excitados, mais eletricidade será gerada. O novo material de baixo band-gap após a modificação química permitiu que os elétrons permanecessem excitados por mais de 1 microssegundo, ou cerca de cinco vezes mais do que o relatado anteriormente.

A célula solar de junção única de banda baixa melhorada com 20,5% de eficiência foi então acoplada a uma célula convencional de perovskita de banda larga. Os pesquisadores obtiveram uma célula tandem de 25% de eficiência de quatro terminais e 23,1% de eficiência de dois terminais de perovskita.

Os co-autores de Zhu da NREL são Jinhui Tong, Dong Hoe Kim, Chen Xihan, Axel Palmstrom, Paul Ndione, Matthew Reese, Sean Dunfield, Obadia Reid, Jun Liu, Fei Zhang, Steven Harvey, Zhen Li, Steven Christensen, Glenn Teeter, Mowafak Al-Jassim, Maikel van Hest, Matthew Beard e Joseph Berry. Alguns pesquisadores são afiliados à Universidade de Toledo e à Universidade do Colorado em Boulder.

O financiamento para a pesquisa na NREL veio do Escritório de Tecnologias de Energia Solar e do Centro de Semicondutores Inorgânicos Orgânicos Híbridos para Energia.

Nenhum comentário:

Postar um comentário